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Section Messwesen: Our responsibilities (highlights)
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Personal and environmental dosimetry
Calibrations and 
verifications

Development of calibration methods Support for experiments



PSI Dosimetry group
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Supporting research at PSI…

Research on new instrumentation and 
methods

BeO OSL system Fluorescence Nuclear 
Track Detectors

Neutron dosimetry (only service in CH)

Poly-Allyl Diglycol Carbonate (PADC)

External personnal dosimetry for PSI 
employees and external customers 

(ETH, research institutes,…)

Internal dosimetry

Whole body counter Thyroid counter Urine and excretion 
analysis

Reporting to the authorities 
(central dose registry)



Supporting research at PSI

06.12.2024Paul Scherrer Institute PSI6



Case studies 
and 

applications

Operational 
properties of 

luminescence 
dosimeters

TL/OSL/RPL
Luminescence 

dosimetry -
why?

Dosimetry 
concepts

Outline
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Page 8

V. C
ase studies

IV. O
perational properties

III. TL/O
SL/R

PL
II. Lum

inescence D
osim

etry –W
hy?

I. D
osim

etry 
concept



What is dosimetry?

“quantification of the energy deposited in a living or inanimate object from 
a radiation field in order to estimate, predict or limit the effect of radiation”

Adjectives
• Passive
• Active 
• Computational
• Retrospective
• Accident
• Luminescent
• Personal
• Environmental
• In-vivo
• Clinical
• Off-line
• Real-time
• Three-dimensional
• Neutron
• Gamma
• Etc.Page 9

Yukihara et al. (2022)

Dosimetry can be… 

(find adjectives)
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Quantities in dosimetry

Physical quantities

• Fluence 

• Kerma K
• Absorbed dose D
• Linear energy 

transfer LET
• Etc.

Radiation 
Protection 
Quantities

• Organ equivalent 
dose HT

• Effective dosis E
• Committed dose 

E50

Operational 
quantities

• Personal dose 
equivalent Hp(10), 
Hp(0.07), Hp(3)

• Ambient 
equivalente dose 
H*(10)
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Quantities for radiation protection
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This lecture
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Detector/dosimeter/dosimetry system

Housing, filters, etc.

Detector

Reader, analysis algorithm

Dosimeter

Dosimetry system
Page 12
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What happens inside the detector? 
How do we assess the fluence? 
How do we assess the LET? 
How do we get the absorbed dose?
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Technologies in individual monitoring

20441895 1910 1925 1940 1955 1970 1985 2000 2015 2030

Today

X-ray

Radioactivity First nuclear reactor

First accelerator

Thermoluminescence (TL)

Optically Stimulated Luminescence (OSL)

Radiophotoluminescence (RPL)

Luminescence 
dosimetry

Plastic nuclear track detectors

FNTD
Track detectors (neutrons)

Gas detectors

Photographic film

Semiconductor dosimeters

Direct Ion Storage (DIS)

???

See: Wernli and Kahilainen (2001), Wernli (2016), Barthe (2001)
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II. Luminescence dosimetry - why?
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Means to measure ionising radiation
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Ionisation chamber

Luminescence

Scintillation counterSemi conductor detector

Radiochromic film
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Advantages of luminescence dosimetry
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Small detectors

No cables

Precision and accuracy

Convenience (easy to read)

Similar to tissue or water

Minimal influence of magnetic 
field

Supposedly minimal influence 
of dose rate

V. C
ase studies

IV. O
perational properties

III. TL/O
SL/R

PL
II. Lum

inescence 
D

osim
etry –W

hy?
I. D

osim
etry concept



No choice but luminescence dosimetry
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Irradiation of fish eggs with protons 
(FLASH)

Irradiation of mice 
with pions

Extremity 
dosimetry

Dose mapping in 
phantoms

Dose mapping in space

V. C
ase studies

IV. O
perational properties

III. TL/O
SL/R

PL
II. Lum

inescence 
D

osim
etry –W

hy?
I. D

osim
etry concept



V. C
ase studies

IV. O
perational properties

Page 19

III. TL/O
SL/RPL

II. Lum
inescence D

osim
etry –W

hy?
I. D

osim
etry concept

III. TL/OSL/RPL

V. C
ase studies

IV. O
perational properties

III. TL/O
SL/RPL

II. Lum
inescence D

osim
etry –W

hy?
I. D

osim
etry concept



Examples of luminescent detectors
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Thermoluminescence (TL) detectors
TLDs

Radiophotoluminescence (RPL) 
detectors - RPLGD

Optically stimulated 
luminescence (OSL) detectors

OSLDs
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How do they work?
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A perfect crystal
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Conduction band

Valence band

Band gap

How do you represent the energy 

levels in a crystal?
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An imperfect crystal
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Conduction band

Valence band

Band gap

How do you represent the energy 

levels in a crystal?

Intermediate 

energy levels

Imperfections in crystals (dislocations, substitutions, etc) create intermediate 

energy levels.
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An imperfect crystal – exposure to ionising radiation
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e-h+

Ionising radiation creates electron-hole pairs. Electrons and holes are released into 

conduction/valence bands and trapped in defects.
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An imperfect crystal – storage
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e-

h+

Charges can remain in traps – from fractions of seconds to million of years.
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An imperfect crystal – stimulation/readout
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e-

h+

Upon stimulation, charges are released from their traps. Their travel to a recombination 

centre. The de-excitation process produces photon, easily detectable in the lab.

   

Photomultiplier 

tube
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Fluorescence vs Phosphorescence vs Stimulated 
Luminescence
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Fluorescence
τ< 10-8 s

Phosphorescence/stimulated 
luminescence  

10-8 s < τ < 109 years 



Two main types of stimulation: 
1) Thermal stimulation
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Thermal stimulation = thermoluminescence (TL)

T
L

Temperature
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Two main types of stimulation: 
2) Optical stimulation
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Optical stimulation = optically stimulated luminescence (OSL)

O
S

L

time
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energy
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Radiophotoluminescence
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Comparison between the techniques

Readout 
technique

• Stimulation
• Readout 

destructive?
• Detection 

window 
restrained?

• Background 
to take into 
account?

• Signal 
acquisition?

• Affected by 
thermal 
quenching?

TL OSL RPL
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Comparison between the techniques

Readout 
technique

• Stimulation
• Readout 

destructive?
• Detection 

window 
restrained?

• Background 
to take into 
account?

• Signal 
acquisition?

• Affected by 
thermal 
quenching?

TL

• Thermal 
contact

• Destructive 
readout

• Broad 
detection 
possible

• Blackbody 
background

• Only 
integrated 
luminescence

• Affected by 
thermal 
quenching

OSL RPL
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Comparison between the techniques

Readout technique

• Stimulation
• Readout 

destructive?
• Detection window 

restrained?
• Background to 

take into account?
• Signal 

acquisition?
• Affected by 

thermal 
quenching?

TL

• Thermal contact
• Destructive readout
• Broad detection 

possible
• Blackbody 

background
• Only integrated 

luminescence
• Affected by thermal 

quenching

OSL

• Optical readout
• (Semi)destructive 

readout
• Need to block 

stimulation light
• Low background 

(light leakage)
• Time-resolved 

measurement 
possible

• Not affected by 
thermal quenching

RPL

• Optical readout
• Non-destructive 

readout
• Need to block 

stimulation light
• High background 

(phosphorescence)
• Time-resolved 

measurement 
required

• Not affected by 
thermal quenching
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Questions
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Could we have TL/OSL from a perfect crystal?
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Conduction band

Valence band

Band gap

No you wouldn’t. No presence of intermediate energy levels acting as trapping 

levels.
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What governs how long the charges can stay in their traps 
before the readout?
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e-

h+

Probability of escape – frequency factor.
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Factors limiting the luminescence efficiency

Page 37

V. C
ase studies

IV. O
perational properties

III. TL/O
SL/RPL

II. Lum
inescence D

osim
etry –W

hy?
I. D

osim
etry concept

e-

h+

e-

e-

h+

En
er

gy

Competition/Retrapping Non-radiative 
recombination

Quenching effects

• Thermal quenching
→ High temperature increases 

the probablity of non-
radiative recombination

• Concentration quenching
→ High number of luminescent 

centres results in energy 
transfer

• Impurity quenching
→ «killer» centres introducing 

non-radiative recombination 
pathways



Factors limiting the luminescence efficiency
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➢ Average luminescence 

efficiency: 3-4 % only…
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IV- Operational properties of luminescence dosimeters
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Operational properties of luminescence dosimeters – what 
you should consider
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Is the system I am choosing good enough for my application?

➢ Do I need to detect low doses (μGy)? High doses (kGy)?

➢ Do I need to correct for energy response in the range I am 

interested in?

➢ Is my signal stable over time?

➢ …
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Sensitivity

Page 41

V. C
ase studies

IV. O
perational 

properties
III. TL/O

SL/R
PL

II. Lum
inescence D

osim
etry –W

hy?
I. D

osim
etry concept

Sensitivity of MgB4O7:Ce,Li under blue light stimulation, green light 

stimulation and thermal stimulation compared to that of Al2O3:C.



Detection limit
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Housing, filters, etc.

Detector

Reader, analysis algorithm

Dosimeter

Dosimetry system
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… is a characteristic of the entire system:

➢ How much signal does the detector emit

➢ How well the system can detect it



Emission spectrum
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Recombination centre: 
Ce3+ (≈350 nm)

Adapt detection unit (photomultiplier response, filter) to emission 

spectrum. For OSL, should differ from stimulation wavelength.



Saturation limit
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Al2O3:C

MgB4O7:Ce,Li

All materials will saturate eventually, some earlier than others.



Energy response
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Signal depends on the energy of incoming photon



Stability of the signal
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Burgkhardt et al., 1976

Fading rate depends on trap 

energy. Fading rate will depend:

- On material

- On trap considered

- On storage condition

T
L

Temperature

 

 

Which peak will fade more 

rapidly?



Ability to measure linear energy transfer (LET)
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Christensen et al., 2023

Al2O3:C has two emission bands 

(blue and UV)…

… and their ratio depends on 

the LET of the incoming particle.

➢ Relevance for particle therapy treatment planning.



Where does this LET dependence come from??

High LET particle

Deposits energy densely amongst its tracks
➔ Dense ionisation tracks
➔ More localised damage
➔ Traps and recomabination along the tracks are easily 

saturated
➔ More competition effects
➔ Lower luminescence efficiency

06.12.2024Paul Scherrer Institute PSI48

Low LET particle

Deposits energy more uniformly 
➔ Isolated excitation regions
➔ Less localised damage
➔ Less local saturation of traps and recombination centre
➔ Higher luminescence efficiency

2.24 keV/mm

He 144.2 MeV/u

19.8 keV/mm

O 385.5 MeV/u

93.3 keV/mm

Ar 450.5 MeV/u

421 keV/mm

Fe 122.9 MeV/u

Courtesy: Dr. Gabriel O. Sawakuchi.



Choose your material wisely
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There is no “perfect” luminescence dosimeter 

that would be able to tick all of those boxes…

→ be wise and select your material.

There are options available, know your material!
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Yukihara et al., 2022



Instrumentation
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Routine readers



Instrumentation
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Research readers

beta

TL/OSL

blue, green, IR

alpha

Photon timer

EMCCD spectrometer

Radioluminescence

Heater

UV LEDs



Instrumentation
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Frank
The luminescence reader

Can:
- Irradiate samples with a 
beta source
- Heat the samples
- Measure 
thermoluminescence

Stein
The spectrofluorometer

Can:
- Measure photoluminescence emission
- Measure photoluminescence excitation
- Measure the lifetime of the luminescence 
emission (pulsed laser sources)

Frank-and-Stein

Can:
- Photoluminescence of irradiated samples

- Vary the OSL stimulation light
- Measure the spectrum of the light emitted during OSL 

measurements
- Photoluminescence at elevated 

temperature/Photoluminescence after heating of the sample
- Time-resolved OSL in the sub-nanosecond range



Frank-and-Stein capabilities

Page 53



Page 54



Page 55
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Applications

Page 56

Yukihara et al. Nature Rev. Meth. Primer 2:26 (2022).
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Applications
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1. Measuring doses following radiological catastrophes

2. Measuring doses and LET for new radiotherapy treatments

3. Constraining the exhumation rate of mountains

4. Characterisation of phosphors

• Issue addressed

• Methodology

• Experimental steps

• Knowledge gained



Measuring doses following radiological 
catastrophes
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Measuring doses and LET for new radiotherapy 
treatments
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Constraining the exhumation rate of mountains
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Characterisation of phosphors
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Wir schaffen Wissen – heute für morgen

Questions?

Master projects 
available in our 
group!!

Get in touch:

Lily.bossin@psi.ch
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